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Vibration induced in engine hardware by a working fluid can be very significant in high-power,
high-amplitude acoustic heat engines, and is a serious impediment to their practical use. This
vibration can cause fatigue and destruction of engine components as well as fuel lines, cooling lines,
and sensor wires. The forces involved make anchoring such an engine to an ‘‘immovable’’ object
impractical. Rigidly attaching two such engines together, and acoustically coupling them with a duct
of such a length and diameter that the two engines mode-lock in antiphase �thus canceling the
longitudinal vibration� appears to be an inexpensive, viable solution. This paper describes in detail
experiments demonstrating the feasibility of this idea, and the underlying theory. © 1999
Acoustical Society of America. �S0001-4966�99�03909-0�

PACS numbers: 43.35.Ud �HEB�

INTRODUCTION

In recent years, considerable progress has been made in
designing practical heat engines that have no moving parts,
other than acoustic oscillations in the working fluid;1 such en-
gines work on principles loosely exemplified by such devices
as the Sondhauss tube2,3 and the Rijke tube,4 where heat
suitably applied to a tube causes spontaneous oscillation of
the gas inside. Thermoacoustic heat engines have the advan-
tage of no bearings or sliding seals, so they hold out the
possibility of extreme simplicity and reliability. In order to
achieve useful power densities, however, the engines must
contain a working fluid under high pressure, oscillating with
an amplitude on order of 10% or more of mean pressure.
Thus the working fluid is capable of exerting enormous os-
cillating force on the structure surrounding it, inducing in-
tense vibration in the engine hardware. Far from being a
mere nuisance, this vibration can be downright terrifying in
an engine of appreciable size; a one-ton prototype that pro-
duces 20 kW of acoustic power5 experiences several g’s of
acceleration when operating full tilt.

The need to control this vibration has been understood
from the earliest days of thermoacoustic research; in a 1958
patent detailing heat-driven acoustic devices, Marrison6 de-
scribes two heat-driven acoustic resonators, intended to drive
small linear alternators, joined end-to-end as shown in Fig. 1,
to achieve vibration cancellation. The original patent reads:

...a pair of devices...juxtaposed in end-to-end relation
for dynamic balance. In order that there shall be ad-
equate coupling between the two vibrating gas col-
umns, a channel is provided that interconnects
them...In the operation of this balanced arrangement,
the movement of the gas at any instant is either in-
ward toward the central plane of both cylinders, or
outward toward the separated ends of the two cylin-
ders. Thus the vibration of each gas column finds a
reaction in the vibration of the other gas column so
that dynamic balance is secured, and external vibra-

tion, shaking of the mount, noise, and the like are
minimized.

The interconnecting channel is necessary because thermoa-
coustic engines, like organ pipes or pendulum clocks, are
self-maintained oscillators, and a pair will not naturally run
at the same frequency, or in a particular phase relationship,
unless they are coupled sufficiently.

The mode-locking of coupled, self-maintained oscilla-
tors was first described by Christiaan Huygens in 1665, who
reported in a letter to his father7 that a pair of large pendulum
clocks sitting a few feet apart would synchronize their ticks;
he further noted that

If two rhythms are nearly the same and their sources
are in close proximity, they will always lock up, fall
into synchrony, entrain.

Following Huygens, we suppose that if two acoustic engines
are nearly the same in natural frequency and coupled in some
way with sufficient strength, they may entrain, thus locking
to each other in frequency and phase. This principle is im-
plicit in the Marrison device, and in this work we explicitly
aim for an understanding of it, so it may be used to the
greatest advantage in minimizing vibration.

Marrison’s concept requires the tandem system of two
engines to be twice as long as a single engine. Acoustic
engines, requiring as they do a resonator which is a signifi-
cant fraction of a wavelength �usually a half wavelength�,
tend to be large already, and a vibration-cancellation method
that does not require additional length is clearly preferable.
We instead consider two engines mounted side-by-side
rather than end-to-end, with two neighboring ends connected
by a narrow, bent duct a half-wavelength long. The acoustic
pressure at the neighboring ends will tend to be in antiphase,
thus encouraging the movement of the gas in each engine to
be opposite the movement in the other. We show that mode-
locking and vibration cancellation in such an arrangement
can be achieved by careful consideration of how the locked
state depends on engine and coupler geometry, the working
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fluid properties, and the difference in natural frequencies of
the two engines.

Our experiments use two small �acoustic power�5 W,
length�1.75 m, diameter�35 mm� thermoacoustic engines
whose cases are welded together. They are coupled acousti-
cally by one of a number of ducts nominally half a wave-
length long, with radii ranging from 1/14th to 1/7th of the
engine resonator radius. The working fluid for most of the
measurements is air at 80 kPa, which is atmospheric pressure
in Los Alamos, elevation 2200 m. Mode-locking of the en-
gines, with their acoustic oscillations in antiphase, is readily
achieved; measurements of frequency, pressure amplitude,
and phase, as well as accelerometer measurements on the
cases, indicate that 90% of the case vibration is canceled by
using a coupler which is 3.5 mm in diameter, or one-tenth of
the diameter of an engine resonator, if the engines are not
more than 0.2% apart in natural �uncoupled� frequency. The
sensitivity to frequency difference is partly a consequence of
our system’s small size; numerical simulations indicate that
for a 30-bar He system whose engine resonators are 10 times
the diameter of those in our small test system, a coupler
one-tenth the engine resonator diameter allows cancellation
of 95% percent of case vibration, when the engines’ natural
frequencies are as much as 1% different. This simulation,
applicable to the 20-kW engine mentioned earlier, implies
that our method should prove useful.

In addition to the measurements and simulations men-
tioned above, we have developed a simple theory to explain
the dependence of the phase of the locked state �and hence
the degree of vibration cancellation� on the coupler dimen-
sions, fluid properties, and the difference in the engines’
natural frequencies. We find that theory, simulation, and ex-
periment all agree extremely well for our small test system,
which provides encouragement that our methods can be re-
lied upon to help design larger and more complex mode-
locked acoustic systems.

Our engines can also mode-lock by ‘‘mass coupling’’
through their shared structure, with no acoustic coupling at
all. This effect, which will be detailed in a separate paper,8 is
too weak to be a major concern in the vibration cancellation
problem.9

I. THEORY

An excellent introduction to mode-locking can be found
in Chapter 12 of A. B. Pippard’s impressive book, The Phys-
ics of Vibration,10 and we shall draw extensively from his

work in developing our own theoretical model. Pippard con-
siders the mode-locking of discrete systems such as LRC
circuits; one of the interesting aspects of the present work is
that acoustic systems contain the additional complexity of
spatial dimension. Therefore we review some properties of
passive, coupled acoustic resonators before considering the
full mode-locking problem.

A. Coupled passive half-wave acoustic resonators

Figure 2 illustrates the basic case-vibration problem and
our proposed solution. In Fig. 2�a�, a single resonator’s case
moves in response to the motion of the gas inside; the fre-
quency is such that the resonator’s length is �/2, where � is
the wavelength. This case motion can be analyzed either in
terms of the axial forces exerted on its ends by the oscillating
pressures inside, or in terms of momentum conservation,
which requires that the case momentum be equal in magni-
tude but opposite in direction to the gas momentum at any
instant. In Fig. 2�b� a half-wavelength coupler has been
added to invert the pressure between two rigidly attached
resonators, so that the acoustic oscillations are in antiphase
and the net axial force exerted by the oscillating gas on the
assembly is zero. In order to achieve such vibration suppres-
sion, the system of three coupled ducts must favor a normal
mode corresponding to a half-wavelength in each duct, with
the two large ducts �the resonators� oscillating in antiphase.
Let the radius of the resonators be r0 and the radius of the
coupler be rc ; in the approximation that the ducts are all
lossless and have the same length l, and r0�rc , the normal
mode frequencies in the neighborhood of f �a/2l are easily
obtained:

f 0�
a

2l
�1�

and

f ��
a

2l � 1�
&

�

rc

r0
� , �2�

FIG. 1. W. A. Marrison’s original concept, from a 1958 patent, for two
acoustic engines mounted in opposition for dynamic balance, with a narrow
channel coupling the two �Ref. 6�.

FIG. 2. Mass-and-spring models of half-wavelength acoustic resonators,
showing �a� a single resonator, with a plug of gas bouncing off gas springs
on the ends, and �b� two such resonators, rigidly attached, and coupled by a
narrow half-wavelength duct to invert the phase of the pressure, thus en-
couraging the two resonators to oscillate in antiphase. Here � stands for
wavelength.
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where a is the sound speed. One solution, f 0 , is the same as
for a single duct, and corresponds to exactly a half-
wavelength in each duct, with pressure nodes in the center of
each duct, and velocity nodes at the two rigid ends and at
each of the two junctions. Since velocity is zero at these
junctions, matching volume velocities on either side does not
require a discontinuity in velocity; hence, the coupler has the
same waveshape and magnitude of oscillation as the resona-
tors do. This is the desired antiphase mode, where the pres-
sure oscillations in the resonators are � out of phase.

By contrast, f � and f � correspond to ‘‘in-phase’’
modes, which tend to maximize case vibration rather than
eliminate it. However, these modes have nonzero velocity at
the junctions, and so the amplitude of oscillation in the cou-
pler is much larger than that in the resonators. Although this
analysis is based on lossless acoustics, the large oscillation
amplitude in the coupler suggests that these in-phase modes
are much lossier than the antiphase mode, so the antiphase
mode is more likely to be selected. In fact, we have never
observed anything but the antiphase mode in our mode-
locked engines. In the antiphase mode the resonators and the
coupler have the same oscillating pressure and velocity am-
plitudes, so the ratio of coupler to resonator dissipation in the
thermoviscous boundary layer near the wall is simply the
ratio of their radii. If this behavior is a good approximation
for what actually happens when two acoustic engines are
coupled together, a narrow coupler is less lossy than a wide
one. Thus if resonator losses are significant in an engine,
there is motivation for keeping the connecting duct narrow
when coupling two together, to minimize additional loss.

B. Coupled, maintained acoustic resonators

The discussion of coupled duct resonators at the begin-
ning of this section treated the two resonators and coupler as
one composite resonator, with well-defined normal modes. A
system of two self-maintained oscillators coupled with a nar-
row duct actually has a much richer behavior, such as that
observed by supplying two similar organ flue pipes or slide
whistles with compressed air so that they sound stable tones,
and allowing them to couple by bringing their mouths in
close proximity. When the pipes are far apart, they ‘‘sing’’
with their separate natural frequencies; one hears a ‘‘beat-
ing’’ at the difference frequency. As the pipes are brought
closer together, this beat frequency slows, and then abruptly
stops—at which point the pipes are locked in frequency and
phase. The frequency of an individual pipe is sensitive to
conditions at the mouth of the pipe; when the two pipes are
close enough to interact, they may alter each other’s frequen-
cies enough to eventually phase lock, if their natural frequen-
cies are not too different. Our coupled thermoacoustic en-
gines display roughly the same behavior as these coupled
organ pipes, and we will let our analytic approach be guided
by this concept of beating slowed or stopped by coupling.

Before proceeding with our theory, it will be helpful to
define exactly what information we seek. Mode-locking in
acoustic oscillators is a broad enough subject that we cannot
present an exhaustive treatment here. Rather, we will limit
our inquiry at the outset to those aspects that we expect will
be most relevant to the vibration-cancellation problem.

One important difference between coupled passive oscil-
lators and coupled maintained oscillators is that in the pas-
sive system, the vibrations of the individual oscillators are
either exactly in phase with each other or exactly antiphase.
When the oscillators are maintained, however, this is no
longer true, and a weakly coupled pair of very closely
matched maintained oscillators may lock with essentially ar-
bitrary phase. In addition, the amplitudes in each oscillator
may be substantially different �true of a passive system as
well, if the coupling is sufficiently weak�. This may be seen
quite readily in the organ pipe demonstration described
above, if pressure sensors are placed in each pipe.

This has important consequences for us—for maximum
vibration cancellation, our coupled resonators must be in an-
tiphase and the amplitudes in both sides must be matched. If
we let

��phase difference between the resonators
�3�

	�ratio of pressure amplitudes in the resonators,

and consider the axial forces exerted by the oscillating fluid
on the structure of our coupled system, we can express the
degree of vibration cancellation in terms of � and 	. If we
define a vibration-cancellation ratio

RV�1�
amplitude of case vibration �coupled engines�

amplitude of case vibration �one engine alone�
,

�4�

then it is found that

RV�1���1�	 cos ��2�	2 sin2 ��1/2, �5�

or

RV�1���	�1 �2������2�1/2, if 	�1, ��� .
�6�

Thus the quantities of most interest to us are � and 	; in
particular, we seek their sensitivities 
�/
�� and 
	/
�� to
the mistuning �� of the resonators, �� being the difference
in the resonators’ uncoupled natural frequencies. To further
simplify our analysis, we will assume that the coupler itself
is in resonance. This seems intuitively like a desirable con-
dition, based on the lossless analysis of Sec. I A and since it
would appear to allow the maximum transmission of energy
from one resonator to the other. This assumption has another
interesting, nonintuitive consequence as well. If we treat the
coupler as an impedance coupling two acoustic circuits, the
resonant coupler corresponds to a coupling impedance which
is all real �resistive�. A resistively coupled pair of maintained
oscillators has some curious properties;11 among them is that
the amplitude in both oscillators must be identical, regardless
of the phase angle! This fortuitous result not only makes our
vibration-cancellation job easier, but it greatly simplifies the
analysis. It implies that if we assume a resonant coupler and
let ��� , we can set 	�1 without any loss of information.
Thus the extent of vibration cancellation is given by � alone,
and its rate of change with �� is given by 
�/
�� alone.

It should be noted that for very narrow couplers, where
the thermoviscous boundary layer is an appreciable fraction
of the coupler radius, experiments and simulations show that
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a coupler shorter than the resonant length provides the opti-
mum vibration cancellation, even though it allows some am-
plitude imbalance.

Figure 3 shows the details of the interface between the
resonators and the coupling duct. The oscillating pressure in
resonator I at the junction with the coupler is p I(t); that in
resonator II is p II(t). We let the end of the coupler at p I be
x�0, and that at p II be x�lc , where lc is the length of the
coupler. These pressures should be in antiphase in order to
cancel vibration in the resonator cases. Note the blowup of
the boundary layer near the coupler wall, indicating the vis-
cous and thermal penetration depths 
� and 
� . We assume
the two resonators �and the coupler� contain the same work-
ing gas in the same state, and the resonators are identical
except for a small difference in natural frequency, due to a
slight difference in gas temperature, for instance. Let the
natural frequency of resonator I be � I and that of resonator II
be � II ; by ‘‘natural frequency’’ we mean the frequency that
a resonator would have if it were uncoupled from the other.
The mistuning can then be defined as

���� II�� I . �7�

We also assume the coupling is weak and perturbs only
slightly the uncoupled behavior of each resonator. If the
resonators are not locked, the oscillations in the resonators
are modulated by a relatively slow beat envelope, like the
organ pipes previously discussed, and the beating is slowed
and eventually stopped by increasing the coupling. Thus we
can write:

p I� t ��R�P I� t �ei��t��I� t ���, �8�

p II� t ��R�P II� t �ei��t��II� t ���, �9�

where R� � indicates taking the real part. We assume P I,II and
� I,II are real and slowly varying compared to �, and P I,II are
always �0. The relative phase � and amplitude ratio 	 intro-
duced in Eq. �3� may now be defined as:

��� II�� I , 	�
P II

P I
. �10�

We let the compromise frequency � be a constant; the ap-
parent instantaneous difference in frequency between reso-
nators I and II is simply �� inst.�
�/
t .

To obtain a pair of coupled differential equations, we
start with a homogeneous equation for one of the maintained
resonators, which it obeys when uncoupled:

d2p I

dt2 �� I
2p I�

� I

Q � 1�
P0

n

P I
n� dpI

dt
�0. �11�

The feedback that maintains the oscillations at or near fre-
quency � I and amplitude P0 is provided by the term
(� I /Q)(1�P0

n/P I
n)dp I /dt; this causes the amplitude to re-

lax toward P0 should the amplitude be initially higher or
lower than P0 . This type of equation is found in Pippard12

and in Van der Pol’s paper on maintained triode oscillators.13

The quantity Q is more or less the passive quality factor of
the oscillator; this and the exponent n determine the relax-
ation time. For this work, the value of n is not important;14

for further discussion, see Ref. 8. For convenience, we
choose n�2.

Let uc(x ,t) denote the x-component of particle velocity
in the coupler, spatially averaged over the coupler cross-
section. If, due to coupling, a volume velocity �Acuc(0,t)
enters the resonator from the coupler, the resonator obeys the
inhomogeneous equation15,16

d2p I

dt2 �� I
2p I�

� I

Q � 1�
P0

2

P I
2� dp I

dt
��

2�a2

l0
� Ac

A0
� duc�0,t �

dt
.

�12�

�The ‘‘source term’’ on the right-hand side has a minus sign
because we define x and uc positive pointing into the coupler
from the resonator.� Here l0 is the length of a resonator, A0 is
its cross-sectional area, Ac is the area of the coupler, � is the
�average� density, and a is the �average� sound speed. A
similar equation can be constructed for p II . To couple the
equations to one another, we solve for the complex particle
velocity in the coupler uc(x ,t)�R�ũc(x)ei�t� �where � in-
dicates a complex quantity�, subject to the boundary condi-
tions p̃c(0)�P Ie

i�I and p̃c(lc)�P IIe
i�II, to obtain

ũc�x ��P Ie
i�I

k̃ c

i��
� sin k̃ cx�

cos k̃ clc�	ei�

sin k̃ clc

cos k̃ cx� .

�13�

Because the coupler is assumed lossy, we use a complex
wave number k̃ c which is approximately:

k̃ c�
�

ac
� � 1�




2rc
��




2rc
i� , �14�

where


�
�����1 �
� ; �15�

rc is the radius of the coupler, ac is the bulk speed of sound
in the coupler, and 
� and 
� are the viscous and thermal
penetration depths, respectively. Here we are making the
simplifying, although not wholly accurate, assumption that
rc�
� or 
� . Later we discuss how it might affect our re-
sults.

At this stage, our analysis has much in common with the
work of Pippard10 and Fletcher.17 Were we interested in the
dynamic behavior of the system as it approaches a locked
state, we could continue the analysis by carrying out the time

FIG. 3. Details of the junctions between two resonators and the coupling
duct that connects them. For vibration cancellation, the system should be
‘‘folded’’ as shown in Fig. 2�b�.
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derivatives in Eq. �12� and in the corresponding equation for
p II(t), discarding small terms, and solving for 
�/
t and

	/
t . However, we are interested primarily in the locked
states, where 
�/
t�0 and 
	/
t�0, so we assume simply
that d/dt�i� . If we also assume that 	�1, i.e., P I�P II

�P �resonant coupler�, the following pair of equations may
be obtained:

���2�� I
2��i�

� I

Q
� 1�

P0
2

P2�
��

2a2

l0
� Ac

A0
� k̃ c

sin k̃ clc

�cos k̃ clc�ei�� �16�

and

���2�� II
2 ��i�

� II

Q
� 1�

P0
2

P2�
��

2a2

l0
� Ac

A0
� k̃ c

sin k̃ clc

�cos k̃ clc�e�i�� . �17�

Subtracting Eq. �16� from Eq. �17�, while noting that � I

�� II�� and �1�P0
2/P2��1, gives

�����
a2

l0
� Ac

A0
� k̃ c

sin k̃ clc

2i sin � . �18�

A resonant coupler implies R� k̃ clc���; thus we have k̃ c

��/lc�i(�/ac)(
/2rc). With appropriate use of the ap-
proximations ac , a I , a II�a , lc�l0 , and 
/rc�1, taking the
real part of Eq. �18� and rearranging gives

sin ���
�2

4� � A0

Ac
� 


rc
�� . �19�

Finally, we let ��� , and differentiate with respect to ��;
the result can be expressed in dimensionless form as:

� �

� � 
�


��
�

�

4 � A0

Ac
� 


rc
. �20�

The factor 1/� on the left-hand side effectively normalizes
the phase angle—most mode-locked systems �including our
acoustic engines� become unlocked at ����/2, so the
range of � is about � radians.

This equation, although clearly the result of many ap-
proximations, has the advantage of being simple to interpret.
It tells us how the phase of the locked state changes as a
function of the �fractional� mistuning ��/�, the geometry,
and the thermoviscous properties of the working fluid. In the
present context, this effectively tells us how the degree of
vibration cancellation is affected by all these parameters. The
factor A0 /Ac is the ratio of resonator to coupler area; the
factor rc /
 is approximately the quality factor Q of the
coupler.18 In general, we want 
�/
�� to be small—i.e., we
want vibration to increase only slightly as our engines be-
come more mistuned; however, we also want to keep the
coupler relatively narrow to reduce losses �see the end of
Sec. I A�. The only obvious solution, according to Eq. �20�,

is to keep the thermoviscous penetration depth 
 small com-
pared to the radius rc of the coupler—in other words, use a
high-Q coupler. This suggests that if the working fluid and
its ambient state are fixed, the best strategy is to increase all
the diameters, thus enabling A0 /Ac to be large while keeping
rc /
 small.

To complement the preceding discussion of how to op-
timize the coupling, we consider briefly the question of when
Eq. �20� is a valid approximation. Equation �20� was derived
assuming weak coupling between the resonators; it is fair to
suppose that if rc /
 is big enough, i.e., if the coupler has a
high enough Q, then the coupling is not weak. Another way
of looking at it, of course, is that the larger the system, or the
thinner the boundary layer in the working fluid, the more
narrow one can afford to make the coupler and still get the
same coupling and the same degree of vibration cancellation.

Another important assumption is that the penetration
depth 
 is small compared to the coupler radius rc . For our
narrowest couplers, 
/rc is approximately 0.3; thus it is natu-
ral to wonder if Eq. �20� still applies. One could carry all
computations out to second order; we will not do so here, but
we will mention two corrections one might plausibly add.
First, the effective cross-sectional area with which the cou-
pler communicates with the resonators is a little less than
�rc

2, because some of the fluid is viscously clamped at the
coupler walls. Thus we might suppose that Ac in Eq. �20�
should be replaced by some reduced area Ac� , where18

Ac���rc
2� 1�


�

rc
� . �21�

Second, a similar correction applies to the length lc . Since
the coupler is narrow and lossy, its effective speed of sound
is slower than in the resonators; thus the length that makes
the coupler resonant is shorter than l0 , and changes with its
radius. Recall that requiring that the coupler be in a half-
wavelength resonance is equivalent to making the real part of
k̃ clc equal to �; an approximate result for lc is

lc�resonant��
�ac

� � 1�



2rc
� . �22�

Had we not assumed lc�l0 in the derivation of Eq. �20�, the
factor lcA0 /l0Ac would have appeared in the result instead
of A0 /Ac , so the two corrections above nearly cancel one
another. We might expect, then, that Eq. �20� is reasonably
accurate even for very narrow couplers.

It is also worth noting that Eq. �20� is independent of
any characteristics of the mechanism driving the resonators.
Thus Eq. �20� should apply equally well to organ pipes or
thermoacoustic engines, when they are acoustically coupled
by a resonant tube. However, this is generally not true for
other �e.g., reactive� types of coupling, such as ‘‘mass cou-
pling’’ through the shared structure.

In the following sections, we describe experiments that
measure 
�/
�� for a variety of coupler diameters, and a
computer model that simulates these experiments. Both ex-
periment and simulation agree well with the predictions of
Eq. �20�. Experiments and simulations are also presented for
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coupled engines whose resonators are not uniform-diameter
ducts, in which case Eq. �20� is not quantitatively applicable.

II. APPARATUS

To explore mode-locking of acoustic engines experi-
mentally, we have built two nearly identical thermoacoustic
engines which are rigidly attached to each other in a side-by-
side fashion. Two neighboring ends of the engines are con-
nected by a coupling duct which can be inserted or removed
from the system by means of valves. These are ‘‘straight
pattern’’ ball valves, which look like a section of straight
duct when open, the fluid not following any kind of tortuous
path. Each engine consists of a straight, circular duct of uni-
form diameter �the resonator� connected to a thermoacoustic
prime mover, by which we mean a heater, a cold heat ex-
changer, and a stack of parallel plates in between; these sus-
tain the oscillations in the resonator when the engine is run-
ning.

Figure 4 shows the essentials of the experimental setup,
and some details of the thermoacoustic prime mover hard-
ware. Note that the engines share a water jacket that cools
their cold heat exchangers, and both are welded to a common
plate at the other end. A section of each resonator is wrapped
with copper refrigeration tubing, which circulates water from
a temperature-controlled bath. Thus the gas temperature in
each engine can be varied independently, enabling control of
��, the difference in natural frequencies. A pressure sensor
is mounted at the end of each resonator where it joins the
coupler. We take the signal from the sensor in resonator I
�pressure sensor I� to represent p I(t), and that from pressure
sensor II to represent p II(t). Using p I as a reference to a
lock-in amplifier, and using p II as the input signal, allows a
direct measurement of �. Independent monitoring of pres-
sure sensors I and II allows one to obtain P I(t) and P II(t).
Accelerometers on the cases measure case vibration in the
axial �x� direction, and numerous thermocouples �not pic-
tured� provide data on the temperature of the gas near the hot
end of the stack, the cooling water temperature, the water

jacket temperatures, and the temperature of the gas inside the
resonators. Multimeters monitor the input voltage and cur-
rent to the tube heaters that power the engines. The acceler-
ometers are used to verify that the two engines welded to-
gether act like a rigid structure, and that vibrations are indeed
canceled when the phase between the engines approaches
�—we find that cancellation of case vibration is at least
99.5% complete when ����0.002.

In order to confirm our analytic and experimental re-
sults, we have simulated our system using DELTAE19 �Design
Environment for Low-amplitude ThermoAcoustic Engines�.
DELTAE integrates the one-dimensional wave equation in the
small-amplitude �‘‘acoustic’’� approximation, including ther-
mal and viscous effects, according to the thermoacoustic
theory of Rott.20 In our numerical model, we have four geo-
metrically identical engines, two coupled by a narrow duct
�which share a common frequency of operation� and two
running independently; the gas temperatures in the resonator
portion of each of the two coupled engines are varied in
order to vary ��, and the � and 	 values that solve the wave
equation in this system are returned by DELTAE. The actual
�� that exists between the simulated coupled engines is es-
timated by forcing each uncoupled engine in the model to
have the same temperature distribution as one of the coupled
engines. For the coupled engines, the input heater power is
assumed to be the same in both; however, in order to match
gas temperatures at both ends of the stack, the uncoupled
engines must use the input heater power as a ‘‘guess’’ which
can be adjusted to meet the ‘‘targets’’ �which include the gas
temperatures at the ends of the stack�.

Measuring the difference in natural frequencies of the
engines is subtle, because it cannot be accomplished when
the engines are coupled. The most obvious way to measure
�� is to measure the beat frequency of the engines when the
coupler valves are closed, using a dual-channel oscilloscope
to observe p I and p II and timing the beats with a stopwatch.
Since ���
�/
t when the engines are uncoupled, where

�/
t is in radians per second, a quick and accurate mea-
surement of �� is obtained. Unfortunately, the ‘‘natural fre-
quency’’ of an engine is dominated by its mean temperature
Tm(x); the temperature at the ‘‘hot end’’ of the engine (TH),
in turn, depends on the impedance the prime mover sees
looking into the resonator, which depends on whether the
coupler valves are open or closed. For instance, assume the
input power to an electric heater as shown in Fig. 4 is con-
stant; if the coupler valve, initially closed, is then opened, the
load on the engine is increased, causing the pressure ampli-
tude to drop and TH to rise.21 Likewise, if the valve is sud-
denly closed, TH will begin to fall. The ‘‘natural frequency’’
we are trying to measure is, of course, the frequency the
engine would have with the coupler valves closed, but with
the same temperature distribution Tm(x) it has in the locked
state with the coupler valves open. When we attempt to mea-
sure the �� corresponding to a given locked state by open-
ing the coupler valves and observing 
�/
t , we are actually
looking at the engines in an ambiguous state where their
temperatures, and hence their frequencies, are changing with
time.

FIG. 4. Experimental setup for exploring the behavior of coupled thermoa-
coustic engines.
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In this work, we employ two basic strategies for resolv-
ing this ambiguity:

�1� Measure ����� two ways:
�a� Let engines equilibrate with coupler valves open;

measure �. Close valves and immediately measure
��.

�b� Let engines equilibrate with coupler valves closed;
measure ��. Open valves and immediately measure
�. Compare with �a�.

�2� In computer model, force Tm(x) in each engine to be the
same in both coupled and uncoupled states; compare
simulation results for ����� with 1�a� and 1�b�.

We find that for the purposes of the present work, the differ-
ence between the results obtained by 1�a� and 1�b� is small;
since we are interested in characterizing the locked state of
the engines, method 1�a� is used for all the data presented in
this paper, unless otherwise specified.

Changes in TH with load do not interfere too much with
the measurement of �� for two reasons: �� is dominated by
the difference in resonator gas temperature, which is set by
the separate temperature control coils; and the engines never
have a large amplitude difference with a resonant coupler, so
any change in TH with load tends to be the same in both
engines. These conditions do not necessarily exist for other
types of coupling, such mass coupling.

III. RESULTS

Figure 5 shows typical behavior of the phase � between
the engines in the locked state versus the fractional mistun-
ing ��/�, for the system shown in Fig. 4. The coupler has
about a 3-mm inner diameter; the working fluid is air at 0.8
bar, and the frequency of operation is about 100 Hz. The
circles are data points taken according to method 1�a� men-
tioned in the previous section, where the engines equilibrate
with the coupler valves open; the triangles are data points
taken using method 1�b�, where the engines equilibrate with
the valves closed. Apparently the two methods agree well.

Figure 5 displays a capture bandwidth of (����/�)capt.

�0.004, or 0.4%, with band-edges near �����/2, where
the capture bandwidth is defined as the maximum natural
frequency difference the engines can have and still achieve
locking. It is apparent that ����� has a linear region near
���; this is where we expect Eq. �20� to apply. Nearer the
capture band-edge, � changes very rapidly with ��, until the
engines unlock at �����/2. The data points shown at �
����/2 are not in fact true, stable locked states; the phase
tends to oscillate with a period of about a minute with an
amplitude of �/10 or more. These states are hysteretic, in
that locking initially occurs only for 0.7����1.3� , but
after locking is achieved, it will hold for phase angles closer
to the band-edge. Just beyond the band-edge, the engines are
unlocked and beat against each other; unlike a linear system,
the beat frequency is slower than �� and the beat envelope
is not sinusoidal. These features are evident in Fig. 6, which
shows one beat cycle of the pressure p I when the engines
have been detuned 20% beyond the capture bandwidth.

One other feature of Fig. 5 worth noting is the gap in the
data near ��� , the region of most interest to us. When ��
is sufficiently small, the ability of the engines to exert forces
on each other through their shared structure, what we have
called the ‘‘mass coupling,’’ is sufficient to elongate the beat
period or even cause mode-locking; thus it is impossible to
get an accurate estimate of �� by the methods mentioned
previously, since the engines cannot be considered un-
coupled when the coupler valves are closed. We detail mass
coupling phenomena in a separate paper;8 here we simply
note that the capture bandwidth for mass coupling depends
on how massive the case is compared to the gas inside, the
bandwidth being larger when the case is relatively light. In
the present work, therefore, we eliminate the mass coupling
in subsequent data sets by attaching additional mass to our
twin-engine assembly �we add an extra 130 kg of mass,
which increases the system’s solid mass by more than a fac-
tor of 10�.

Figure 7 shows ��� and 	�1 for our mode-locked
engines near ���; the working fluid is air at 0.8 bar and
300 K, and the coupler is 3.2 mm in diameter and its length

FIG. 5. Relative phase � versus fractional mistuning ��/� for two acous-
tically coupled thermoacoustic engines. For the circular data points, the
engines were allowed to thermally equilibrate with the coupling valves
open; for the triangular points, the engines equilibrated with the coupling
valves closed.

FIG. 6. Oscillating pressure versus time for one of two coupled thermoa-
coustic engines, when their frequency mismatch �� is 20% larger than the
capture bandwidth. The oscillating pressure p I(t) is normalized to the mean
pressure pm , and the time t is normalized to the beat period in the absence
of coupling, 2�/��, thus showing the period elongation. �The slight rippling
of the beat envelope is due to aliasing.�
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is chosen to make it resonant. Recall from Eq. �6� that the
cancellation ratio RV�1��(���)2�(	�1)2�1/2; with the
resonant coupler in place, it is apparent that the case vibra-
tion is dominated by the phase angle �, the amplitude mis-
match 	�1 being relatively negligible, as predicted by
theory. Additional measurements verify that if the coupler
length lc is made even a few percent larger or smaller than
the resonant length (�ac /�)(1�
/2rc), 	�1 increases dra-
matically.

The main objective of our experiments is to measure

�/
�� as a function of coupling strength, which we vary by
changing coupler diameter. Data of the type in Fig. 7 were
recorded with air at 0.8 bar, 300 K as the working fluid, for
couplers of five different diameters, ranging from 2.7 mm
�A0 /Ac�185, 
/rc�0.29� to 4.8 mm �A0 /Ac�58, 
/rc

�0.16�. In all cases, the resonator radius r0 remains constant
at 1.82 cm, and the coupler length lc is chosen to make the
coupler resonant. The results are summarized in Fig. 8, in
which each data point represents the slope of a data set like
that of Fig. 7, scaled by 1/�. It is evident that experiment,
theory, and simulation are all in excellent agreement, imply-
ing that the mode-locking of uniform diameter, circular duct
resonators coupled by a resonant, half-wavelength duct is

well understood to first order. The disagreements between
experiment and theory are on the order of a few percent,
which is about the precision to which the inner radii of the
couplers are determined.

Engine resonators are not necessarily cylindrical ducts
of uniform cross section, as was assumed when deriving Eq.
�20� and other formulas. A resonator with varying cross sec-
tion may be shorter than a uniform duct of the same natural
frequency, it may suppress harmonic generation at high am-
plitudes, and it may decrease dissipation at low amplitudes.
Rather than present a theory8 for arbitrary resonator shape,
we consider one limiting case, to gain insight, and compare
its predictions with experiments and simulations.

We consider the limiting case of two coupled Helmholtz
resonators, each consisting of two volumes V1 and V2 con-
nected by a duct area A0 and length l. The two V2’s are
connected by a coupling duct of radius rc and length lc

��/2. We find that

� �

� � 
�


��
�

�

4 � A0

Ac
� 


rc
�4

V1�V2

�A0
� V2

V1
� �

�
�

4 � A0

Ac
� 


rc
FH , �23�

where FH is what we call the ‘‘Helmholtz factor.’’ This for-
mula reverts to Eq. �20�, the half-wave resonator result, if
V1�V2�V�A0(�/8), and if l�(4/�2)� �which forces the
Helmholtz resonator frequency to be the same as the half-
wave resonator�. Together, l and V describe a plausible
mass-spring model of a half-wave resonator. This says the
‘‘effective mass,’’ in this context, of the oscillating fluid in a
half-wave resonator is about 0.8 of its total mass.

Most importantly, we note that 
�/
�� has the same
dependence on rc and 
 for coupled Helmholtz resonators as
for half-wave ducts. This suggests that any data on resona-
tors of arbitrary shape should still lie on a straight line on a
graph such as Fig. 8, but with a slope that may differ from
unity.

Experiments were done using a setup identical to that
shown in Fig. 4, except the resonators were altered as shown
in Fig. 9, with a shorter overall length and a sizable section
of duct near the coupled ends that is about twice the cross-
sectional area of the original duct. This particular design was
chosen to make the first and second overtones of the resona-

FIG. 7. Plots of ��� and 	�1 vs ��/� for system of Fig. 4, where
working fluid is air at 0.8 bar and 300 K; coupler has a diameter of 3.2 mm,
and its length is chosen to make it resonant. Note that ��� and 	�1 are
plotted to the same scale.

FIG. 8. Summary of 
�/
�� results for thermoacoustic engines coupled by
resonant half-wavelength ducts of various diameters.

FIG. 9. Engines used for the measurements in Sec. III; these use the same
prime movers as the first set of measurements, but the resonator shape has
been altered to suppress distortion at high amplitudes.
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tor lie half-way between harmonics of the fundamental, to
suppress distortion at high amplitudes, while keeping the
fundamental frequency the same as before. Data of the type
shown in Fig. 7 were taken for the same five couplers; the

�/
�� results, along with DELTAE simulations of this sys-
tem, are summarized in Fig. 10. The abscissa has one adjust-
able parameter, FH �as defined in Eq. �23��, which is chosen
to best fit the data. With FH properly adjusted, experiment,
theory and simulation are in excellent agreement. The gen-
eral theory for arbitrarily shaped resonators has been derived
by us.8 These results, and those in the previous section, give
us confidence that DELTAE can be relied upon to help design
systems more complex than those we can readily analyze.

IV. APPLICATION TO VIBRATION CANCELLATION

The application of the results in the previous section to
the vibration cancellation problem is straightforward. Typi-
cally, one might desire a given level of vibration cancella-
tion, with two engines that are likely to experience a known
�or estimated� range of detuning, and one would like to know
what length and radius coupler is necessary to achieve the
desired cancellation. In other words, given a desired RV as in
Eq. �6�, and an expected ����, we want to find lc and rc . We
assume that the working fluid and its state are fixed; thus 
 is
known. If we assume a resonant coupler, then �������	
�1�, and RV�1������. Then the slope of ����� at zero
is related to the desired vibration cancellation and the maxi-
mum estimated ���/�� by

1�RV�desired�

���/���max, est�
��


�


��
�

�2

4 � �r0
2

�rc
2� 


rc
FH . �24�

This can be solved for rc to yield

rc���2

4
r0

2

���/��
1�RV

FH�1/3

; �25�

the resulting value for rc can be substituted along with 
 into
Eq. �22� to obtain lc .

Suppose, for instance, that we have two engines using
helium gas at 30 bar, 300 K, and whose resonators have a

radius of 15 cm, with FH�1 �e.g., resonators of uniform
diameter�. Suppose they may vary as much as 1% in natural
frequency during operation, and we want to eliminate 95%
of the vibration. Thus we have 
�0.3 mm, r0�15 cm,
���/���0.01, and RV�0.95. According to Eq. �25�, the
minimum coupler radius is rc�1.5 cm.

An additional constraint one is likely to face is the maxi-
mum additional dissipation, due to the coupler, that can be
tolerated. According to the simple ideas at the end of Sec.
I A, the dissipation in the coupler is simply (rc /r0) times the
dissipation in a main resonator.22 This is only strictly true at
��� , where the pressure and velocity profiles in the cou-
pler are the same as in the resonators. When ��� , the
asymmetry in the boundary conditions of the coupler causes
its pressure and velocity amplitudes to increase; this can be
seen by looking at Eq. �13�. Let the thermoviscous dissipa-
tion in a resonator be Ė0 , and that in the coupler be Ėc . If
we assume a resonant coupler, and ��� , hence 	�1, we
find that

Ėc

Ė0

�
rc

r0
�1�� �����

�

rc


/2
� 2� ; �26�

we can use Eq. �23�, the relationship between ����� and
��, to rewrite this as:

Ėc

Ė0

�
rc

r0
�1�

�2

4
FH � ��

�
� 2� r0

rc
� 4� . �27�

For a given ��/�, there will exist an optimum rc /r0 for
which the dissipation in the coupler is a minimum; it is found
to be

rc

r0
�

opt.

��3�2

4
FH � ��

� � 2�1/4

. �28�

For the large-diameter system considered above, where the
maximum ���/���1%, this formula predicts (rc /r0)opt.

�1/6 �DELTAE predicts (rc /r0)opt.�0.17�; if r0�15 cm, this
implies rc�2.5 cm, about 5/3 times the minimum radius
needed to achieve the desired vibration cancellation. In other
words, because of the increased dissipation that occurs with
increasing ��, one gets less dissipation overall by using a
larger-diameter coupler and keeping �� small, even though
this increases the surface area of the coupler. In this example,
the 2.5-cm-radius coupler dissipation is about 15% of reso-
nator dissipation when ���/���0, and increases to a little
over 20% when ���/���0.01. On the other hand, the 1.5-
cm-radius coupler dissipation is only 10% of resonator dis-
sipation at ���/���0, but rises to over 30% when
���/���0.01.

Thus in choosing the proper coupler radius, one must
consider not only how much vibration or dissipation can be
tolerated, but also how often and for how long the engines
might be expected to operate in the extremes of the expected
range of detuning. It may be better to use the minimum rc

specified by Eq. �25�, or an even narrower one, if the engines
will only rarely experience significant detuning. Equations
such as Eq. �23�, Eq. �25�, and Eq. �28� are but helpful
guides in making an intelligent choice.

FIG. 10. Summary of 
�/
�� results for thermoacoustic engines coupled by
resonant half-wavelength ducts of various diameters, with the engine reso-
nators having the shape pictured in Fig. 9.
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The above results apply in the low-amplitude limit,
where turbulence is unimportant. To achieve a useful power
density, a practical device may need to operate at a high
amplitude. In the limit of very high Reynolds number, where
the Moody friction factor23 becomes nearly constant with
amplitude, we estimate that the same optimum ratio (rc /r0)
as before will give the minimum dissipation. A more com-
plicated, but not implausible, scenario is one where the nar-
row coupler has a much higher peak Moody friction factor
than the resonator, in which case high velocities in the cou-
pler could be very costly. Widening the coupler would not
only reduce ��, reducing the peak velocity in the coupler,
but also reduce its friction factor. Thus the amplitude at
which the engines operate is another consideration in opti-
mizing the coupling.

This work is exclusively devoted to couplers which are
circular ducts of constant cross-section, of nominal length
�/2. One may wonder if other coupler shapes might provide
the same degree of coupling, with fewer losses. We have
little experimental data on alternate coupler shapes, but in
our computer simulations, we have explored many different
coupler shapes and designs, as well as placement of the cou-
pler at points on the resonator other than the pressure antin-
odes. We have never found a design that gives as much
coupling for as little loss as a uniform-diameter circular duct.
It is often advantageous to ‘‘neck down’’ a portion of a reso-
nator, because compared to a uniform-diameter duct at the
same frequency, it reduces the surface area for dissipation
more than it increases the particle velocity, resulting in less
dissipation overall.24 For a coupler, however, necking down
the duct decreases the coupling strength; this and other fac-
tors make it appear that the uniform-diameter coupler is op-
timum.
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